方浪书院 通过搜索各大小说站为您自动抓取各类小说的最快更新供您阅读!

人活着真不容易呀!最近的生活实在有些忙碌,事情有点太多了,处理不过来。心思不能全部放在小说上,让小说看起来有些不舒服,同时也是实在没有任何灵感接着往下写了,之前想多写一些也写不出来。

剧情基本才刚开始,我会趁五一的时间将剧情从新梳理一遍,若是有必要的话,会在后续的章节里面插入一到两张介绍暗线剧情的内容。

请各位耐心的朋友们先等等吧,等到五一之后,小说会继续更新的,要是有好同志看到这里,请帮忙点个催更,拜托了。

再次声明,不需要任何礼物,但是我还是想要一点人气,想让更多的人看到这部小说,应该算得上是每个小说作者都想做的事情了吧。

若是看完的朋友们觉得小说写的还可以看的话,不妨帮忙向周围人推荐一下。若是觉得小说写的比较难以接受的话,完全可以在小说评论区里面或者章节评论里面写出来。

你们的所有评论我都能看得到,正所谓独木难支,没有人帮扶,靠一个人哪里能写得出好看的小说呢?

你们发表的是自己的看法,作为作者,最需要的就是读者的看法,这些都是帮助我更好的更新这本小说的必要一步。

同时再次感谢一直跟读的读者,这本小说本来就是第一次写,文笔不太好,而且剧情比较琐碎,还有不少暗线,导致看着可能非常凌乱。

等到五一假期之后,小说就会马上更新的,但是依然有一个请求,就是请各位务必随手点了催更,拜托拜托!

小说章节需要一千字才能发表,所以下面的东西都不用看了,祝各位读者生活顺心美满,好好吃饭哦!

——————

“欧几里得模型” 通常指基于古希腊数学家欧几里得(Euclid)的几何理论构建的数学模型,核心是欧几里得几何(Euclidean Geometry)。这一模型是古典几何学的基石,也是人类最早系统化的公理化数学体系之一。以下从多个维度解析其内涵:

一、欧几里得几何的核心框架

欧几里得在《几何原本》中以公理化方法构建几何体系,通过少数几条不证自明的公理(Axioms)和公设(postulates),推导出整个平面和空间几何的定理。其核心包括:

1. 五大公设(几何专属)

直线公设:任意两点可通过直线连接。

线段延长公设:线段可无限延长为直线。

圆公设:以任意点为圆心、任意长度为半径可作圆。

直角公设:所有直角彼此相等。

平行公设(第五公设):过直线外一点,有且仅有一条直线与已知直线平行。

(注:第五公设的争议催生了非欧几何,如罗氏几何和黎曼几何。)

2. 五大公理(通用逻辑原则)

等于同量的量彼此相等。

等量加等量,其和相等。

等量减等量,其差相等。

彼此重合的图形全等。

整体大于部分。

3. 研究对象

平面几何:研究二维空间中的点、线、面、三角形、圆等图形的性质(如勾股定理、三角形内角和为 180°)。

立体几何:扩展到三维空间,研究棱柱、圆锥、球体等立体图形的体积和表面积。

二、欧几里得模型的数学表述:欧几里得空间

在现代数学中,欧几里得几何的模型被抽象为欧几里得空间(Euclidean Space),记作 Rn(n 为维度)。其特征包括:

度量结构:两点间距离由欧几里得度量(勾股定理的推广)定义:d(x,y)=(x1?y1)2+(x2?y2)2+?+(xn?yn)2

线性结构:空间中的点可表示为向量,支持加法和数乘运算(如笛卡尔坐标系)。

几何性质:满足欧几里得公理,如平行公设成立,三角形内角和为 π 弧度等。

三、与非欧几何的对比

欧几里得模型的独特性在于其平直性,而非欧几何通过修改平行公设,描述弯曲空间:

罗氏几何(双曲几何):过直线外一点,存在无穷多条平行线,三角形内角和小于 180°,描述负曲率空间(如马鞍面)。

黎曼几何(椭圆几何):过直线外一点,不存在平行线,三角形内角和大于 180°,描述正曲率空间(如球面)。

欧几里得几何可视为非欧几何在曲率为 0 时的特例。

四、应用领域

现实世界建模:

建筑、工程(如桥梁、房屋的平面设计);

经典物理学(牛顿力学中三维空间的描述);

计算机图形学(二维 \/ 三维渲染的基础)。

数学基础:

作为公理化方法的典范,影响了现代数学(如希尔伯特的《几何基础》);

欧几里得空间是分析学、拓扑学、线性代数的基础模型。

认知与哲学:

欧几里得几何曾被视为 “绝对真理”,其公理化思想深刻影响了科学方法论和哲学思辨(如康德的 “先验直观”)。

五、延伸:模型论中的欧几里得几何

在数理逻辑的模型论中,欧几里得几何的公理系统可视为一个形式理论,而欧几里得空间 Rn 是该理论的一个模型(即满足所有公理的数学结构)。此外,还存在其他模型(如基于有理数域的几何),但 Rn 是最经典且与直观相符的模型。

总结

欧几里得模型以公理化方法构建了人类对平直空间的认知框架,其影响跨越数学、科学和哲学。尽管现代物理学(如广义相对论)采用非欧几何描述时空,但欧几里得几何仍是基础科学和工程领域的核心工具,其公理化思想更是数学理性精神的象征。

方浪书院推荐阅读:顶级Enigma的专属抑制剂男人,女人快穿渣女万人迷结婚生娃快穿:被攻略了,新男主他很会撩我的能力藏不住了帝女临安策秋凉了,婆家该灭门了!重生主母手执刃,侯府满门上西天我开了一间精灵饲育屋全员团宠郡主别太坏快穿:绑定大佬后趋吉避凶,从杂役弟子开始不辜道者从诡异大陆开始军爷以身许国,军嫂许他也许家[射雕同人]妖女盛气凌妻宝可梦不是工具斗破:思过崖震惊女神云韵摄政王带娃娇宠野玫瑰穿书后,恶毒女配携带空间发大财寻龙藏珠重生婚宠:总裁撩上瘾一晚情深,首席总裁太危险我家有直男被弃鬼宅?玄学大佬的直播间火了引她深爱弑天刃面甜心黑小白菜,重生八零撩了狼小姑娘腰细身软,三爷诱吻成瘾毕业后,我回村种地直播四合院:随身一个成长空间四方飘摇逃婚后,她在古代养殖创业暴富了滨城霸主:虐妻悔途剑修小师妹,她六艺全通灵异万界人在奥特:吾乃雷奥尼克斯摆烂吃瓜:满朝文武嘻嘻?不嘻嘻直播算命:遇到亲生父母人偶们的舞台剧这个法师怎么比战士还能打冷面大理寺少卿,天天热脸把我宠扮演舔狗后,深陷修罗场超兽武装:轮回者的系统八零娇妻妩媚,高冷学神食髓知味堂堂女大学生,你说我是阴间使者不灭钢之魂林有德摄政王的王妃狂炸天修仙大佬异世养夫记
方浪书院搜藏榜:我在末世拥有了躺平生活恭送道友飞升偷偷招惹重生七零美女画家拿捏工程师神算疯玫瑰,撩得恶犬贺爷心尖宠LOL:快苟到世一上,你玩实名制?综影之我在清剧里想摆烂美漫:什么年代了还当传统蝙蝠侠葱茏如叶八零换亲女配?我靠签到系统杀疯青鲤修仙记摆烂后我重生了福天记等穗抽芽等爱开花茵绝遥全家重生,五岁萌宝被全京城团宠我爹是皇上鬼帝狂妃倾天下在朝堂被偷听心声后,他们都颠了梦回花国娘子别走,为夫一定认真背夫纲现实世界里的爱丽丝我用重生埋葬他勾魂的眼神末世重生,只想囤粮摆烂度日非人世界的人类生活普通人快穿指南八零年代探案日常情逢对手就是爱你,小糯米梦初迷离总有叹惋穿成末世文漂亮女配,男主宠上瘾全民武道:我以诡魂凶兽为食逃荒海岛,奶包福运绵绵赶海发家小马宝莉:马格分裂的公主炮灰好像变了你好呀,作文民国聊斋杀穿诡片世界前任求着我回去先离后爱,前妻在恋综市场杀疯了云阁飞梦穿成修仙界的凡人公主后我登基了高门军官灭妻:要她改嫁送她进监人在武动,开局签到药老戒指我看上了哥哥的战友尘世长生仙爱我吧,稳赢契约新妻怀孕出逃除我以外,全队反派厉少你前妻带崽来抢家产啦
方浪书院最新小说:全网黑学渣竟是国宝级太子妃可是裴相她好男风啊安魂鬼事录帝白翎重生拒婚,首辅却一夜白头求原谅无敌公主:红棉大帝SSS级雄虫亲晕军雌上将家有小福宝,荒年也丰收我以柴刀问苍天综影视假期脑洞四合院:拒绝秦淮如,踢爆易中海破茧成凰前男友的追悔录九霄凌仙诀盗墓:我携永恒家族吞噬诸天在男神锅里沦陷的365天在星际当直男但长成小白脸怎么办轮回修仙路穿越七零:大佬,你的孩子重生了六零胖崽福运旺!全家躺赢万元户铁血盛唐:从废太子到万国至尊阴阳箓笔记新人写作技巧京圈姬爷的糖糖又想双修啦快穿之气运男主的黑月光风雨中的野菊花驯龙高手:天命代言人路人炮灰,但万人迷听懂毛茸茸说话,我成了警局团宠后娘不好当之四处找钱路重生后被京圈太子娇养了血族小公主觉醒后,狼王跪了转生索罗亚,被精灵老婆包围了梦幻西游之龙宫也疯狂武道霸主:小保安也能穿越?盗墓之当诡异绑定神豪系统水仙花的执念时爷破防了,每天都想求复婚!领袖之证:汽车人与东方神秘力量穿书后她抢了小姐身份四合院:一个都跑不了陛下,不好了!娘娘她又去种田了仙途萌宠缘:双仙欢闹逆袭路婚色难产当晚,霍医生转身守护白月光父子都选白月光,我回现代当团宠恶雌洗白后,12兽夫又争又抢!玄学大佬直播算命,全网爆红成顶流港夜缠欢斗罗:霍雨浩的百式攻略手册投喂病弱哪吒,我成陈塘关团宠