方浪书院 通过搜索各大小说站为您自动抓取各类小说的最快更新供您阅读!

1961. 从前,无穷的存在并非通过逻辑能力得以展现,而仅仅是通过精神想象和感知;但数学已经表明……超限存在的结构是可以通过思维工具来探索的。——凯泽·c. J.

《科学、哲学与艺术讲座(纽约,1908)》,第42页。

往昔,无穷之存,非由逻辑而显,唯赖精神之想象与感知;然数学已示……超限之理,可由思维之器探之。——凯泽·c.J.

《科学、哲学与艺术讲录(纽约,1908)》,第四十二页。

1962. 数学概率论是一门旨在尽可能通过计算来确定命题或陈述,或未来、过去事件(尤其是偶然事件或依赖于其他已知概率的命题或事件)的可信度大小的科学。——克罗夫顿·m. w.

《大英百科全书》第九版;“概率”条目。

数学概率论者,盖欲以计算量度命题、陈述或事之可信度(无论过往未来,尤指偶然之事,或系于他已知概率之命题、事件)之学也。——克罗夫顿·m.w.

《大英百科全书》第九版,“概率”条。

1963. 概率论本质上不过是简化为计算的常识;它能让我们精确地把握那些敏锐的头脑凭一种往往无法解释的直觉所感受到的东西。如果我们想想这一理论所催生的分析方法,它所依据的原理的真实性,运用这些原理解决问题时所需要的精妙逻辑,建立在它之上的公共效用,以及通过将其应用于自然哲学和道德科学中最重要的问题而获得的并可能继续获得的扩展;再如果我们观察到,即便是在无法进行计算的事情上,它也能为我们的判断提供最可靠的指导,教会我们避免那些常常误导我们的错觉,那么我们就会明白,没有哪门科学比它更值得我们深思,也没有哪门科学更适合纳入我们的公共教育体系。——拉普拉斯

《概率的分析理论》,引言;《着作集》第七卷(巴黎,1886),第153页。

概率论者,实乃化常识为算学也;它能令吾人精确把握敏锐者凭莫名直觉所感之物。观其催生之分析法、所据原理之真、解问题所需之精妙逻辑、所立之公共效用,及其于自然哲学、道德科学要题之应用与拓展;又见其于不可计算之事,亦能导吾人判断,避吾人于迷误,则知无学更值得深思,更宜入公共教育者也。——拉普拉斯

《概率分析论》序;《全集》第七卷(巴黎,1886),第一百五十三页。

1964. 有一个非常确定的真理是,当我们无法确定什么是真实的时候,我们应该遵循最有可能的东西。——笛卡尔

《方法论》第三部分。

诚然,若吾人不能定何为真,则当从其最可能者。——笛卡尔

《方法论》第三篇。

1965. 论证是通过一个或多个证据来表明两个观念之间的一致或不一致,这些证据之间存在着恒定、不变且可见的联系;而概率则不过是通过证据显现出的这种一致或不一致,这些证据之间的联系并非恒定不变,或者至少不是被感知为恒定不变的,但其足以促使心灵判断一个命题为真或为假,而非相反。——洛克·约翰

《人类理解论》第四卷,第十五章,第1节。

论证者,示二念之合离,借一或多证,证间有恒常不变可见之联系也;概率者,亦借证显此合离,然证间联系非恒常,或至少不被感知为恒常,然其足以使心断命题之真伪,而非其反。——洛克·约翰

《人类理解论》卷四,第十五章,第一节。

1966. 必然真理与偶然真理的区别,实际上就和可公度数与不可公度数的区别一样。因为把可公度数化简为一个共同度量单位,类似于对必然真理的证明,或者说把它们化简为同一的真理。但就像在不尽根比例的情况下,化简会涉及一个无限过程,却又在不断接近一个共同度量单位,从而得到一个确定但永无止境的序列,偶然真理也需要一种无限的分析,而这只有上帝才能完成。——莱布尼茨

《哲学着作集》[格哈特编]第7卷(柏林,1890年),第200页。

必然之理与偶然之理,其别犹可公度之数与不可公度之数也。盖可公度者约为共率,类于必然之理之证,或约为同然者。然若不尽之率,约之则涉无穷,而渐近共率,是以得一定而无竟之序列;偶然之理亦需无穷之析,唯上帝能竟其功。——莱布尼茨

《哲学着作集》[格哈特编]第七卷(柏林,1890年),第二百页。

1967. 这里所谈到的理论(概率论),极好地说明了排列组合理论的应用,而排列组合理论是离散量代数的基础部分;它在基础部分,对于准确使用术语、精细区分意义的细微差别来说,是一种极好的逻辑训练;最重要的是,它涉及到现代生活中一些最重要的实际事务的规范。——乔治·克里斯托尔

《代数学》第2卷(爱丁堡,1889年),第36章,第1节。

所论之学(概率论),善明排列组合之施用。排列组合者,离散量代数之基也。其初阶于精用术语、细辨义之微殊,实为良佳之逻辑修练。尤要者,它关涉现代生计中数桩至要实务之规制。——乔治·克里斯托尔

《代数学》第二卷(爱丁堡,1889年),第三十六章第一节。

1968. 概率论或许是数学中这样一个分支:它既有趣味性,又令人困惑,同时还具有极大的实际重要性。它的历史既展现了数学科学所能取得的奇迹,也展现了它所不能超越的界限。它是严格演绎法与广阔的归纳科学领域之间的纽带。一个完整的概率论将会是信念形成的完整理论。诚然,遗憾的是,正如贝特朗先生所说,“不读拉普拉斯的着作,就难以理解概率论”,而且“不经过最深刻的数学研究为其做准备,就无法读懂拉普拉斯的着作”。——E.w.戴维斯

《美国数学会通报》第1卷(1894-1895年),第16页。

概率论者,或为数学分支中最有趣、最惑人,而实用尤大者。其史既显数学所能成之奇迹,亦露其所不能越之界限。它乃严演绎与广归纳科学之津梁。完备之概率论,即信念形成之完备理论也。惜哉,如贝特朗所言:“不读拉普拉斯之书,难明概率论;未历精深数学研习,不可读拉普拉斯之书。”——E.w.戴维斯

《美国数学会通报》第一卷(1894-1895年),第十六页。

1969. 生活中最重要的问题,大部分实际上只是概率问题。严格来说,甚至可以说我们几乎所有的知识都是有疑问的;而在我们能够确切知道的少数事物中,即便是在数学科学本身里,作为发现真理的主要手段的归纳法和类比法,也是建立在概率基础上的,因此整个人类知识体系都与这一理论相关联。——拉普拉斯

《分析概率论》,引言;《全集》第7卷(巴黎,1886年),第5页。

人生至要之问,多实为概率之题。严而言之,吾辈所知,殆皆有疑。即便是数学之中,少数确知者,其发现真理之要法——归纳与类比,亦本于概率。故人类知识之全体系,皆与此学相关。——拉普拉斯

《分析概率论》,引言;《全集》第七卷(巴黎,1886年),第五页。

1970. 概率论中最值得注意的特点之一是,它已经被发现与人类凭借本能和经验(无论是个人的还是种族的)得出的结论相协调并为之提供了证明。同时,它还纠正、扩展了这些结论,并赋予它们一种确定性和精确性,而这些粗略但合理的常识性判断在此之前是不具备的。——m.w.克罗夫顿

《不列颠百科全书》第九版,“概率”条目。

概率论最可称奇者,在于它与人类由本能、经验(无论一己之验还是种族之积)所得之结论,能相契合且为之佐证。同时,它又能匡正、拓展这些结论,赋予其确切与精审,而此等粗略却合理之常识,昔时未有也。——m.w.克罗夫顿

《不列颠百科全书》第九版,“概率”条。

1971. 一门始于对赌博游戏研究的科学(概率论),竟然成了人类知识中最重要的对象之一,这实在是了不起。——拉普拉斯

《分析概率论》,引言;《全集》第7卷(巴黎,1886年),第152页。

有学始于博戏之考,竟成人类知识至要之对象,斯亦奇矣——此谓概率论也。——拉普拉斯

《分析概率论》,引言;《全集》第七卷(巴黎,1886年),第一百五十二页。

1972. 自拉普拉斯的学术生涯结束后,这一学科(概率论)几乎没有增添什么新内容。科学史上不止一次出现过这种研究活动衰减的情况。当这样一位天才离世后,他所耕耘的领域在一段时间内似乎会显得枯竭,留给后来者的收获寥寥无几。令人遗憾的是,我们对这些天才头脑的内在运作,以及他们每一项发现所依据的线索,知之甚少。这些发现呈现在世人面前的那种说教式和综合性的形式,几乎没有留下什么痕迹,难以体现出那些巧妙的归纳、对适宜性和类比性的敏锐而细致的感知,以及想象力……而这些无疑曾指引着像拉普拉斯或牛顿这样的大师构建如此宏大的蓝图——只剩下一些次要的细节,由那些技巧稍逊的评论者和追随者来补充。——m.w.克罗夫顿

《不列颠百科全书》第九版,“概率”条目。

自拉普拉斯役毕,概率论几无新获。科学史上,类此研究衰歇之事,非止一端。天才既逝,其耕耘之域,一时若竭,后学可采者鲜。惜哉,吾辈于彼等天才之心路、诸发现之线索,知之甚少。其呈于世者,多说教综合之体,鲜留巧归纳、敏察适宜类比、富想象之迹……而此等实为拉普拉斯、牛顿之辈构宏图之指引,仅余细故,待才逊之评注者、追随者补之。——m.w.克罗夫顿

《不列颠百科全书》第九版,“概率”条。

1973. 误差理论可以定义为数学的一个分支,它首先研究的是计算量和观测值所受到的一个或多个误差来源的综合影响的表达;其次研究的是误差大小与其出现概率之间的关系。——R.S.伍德沃德

《概率论与误差理论》(纽约,1906年),第30页。

误差论者,数学之一支也。其一,究计算、观测所受诸误差源之综合影响如何表述;其二,究误差之大小与其出现之概率有何关联。——R.S.伍德沃德

《概率论与误差理论》(纽约,1906年),第三十页。

1974.在概率论的所有应用中,没有哪一种比误差理论更有用。在天文学、测地学、物理学、化学,以及每一门需要在测量、称重和计算上达到精确的科学中,误差理论知识都是不可或缺的。借助这一理论,精确科学在19世纪取得了巨大进步,不仅在对自然常数的实际测定方面,而且在明确未来在同一方向上可能取得的成就方面也形成了清晰的认识。例如,在科学史上,最令人满意且富有启发性的事例之一,就是最小二乘法这一独特方法在解决地球及太阳系其他天体所呈现的问题时取得的成功。事实上,最小二乘法的实用价值和理论重要性如此之大,以至于它常常被误认为是整个误差理论,有时甚至被视为概率论本身的主要组成部分。——伍德沃德,R. S.

《概率论与误差理论》(纽约,1906年),第9-10页。

概率论之诸用,莫逾于误差之论。天文、测地、物理、化学,及凡需精于量、衡、算之学,误差之论皆不可阙。赖此论,精确之学于十九世纪大进,不仅实测自然常数,且于未来同途可竟之功,亦成清晰之见。譬如科学史上,最称惬心启智者,莫过最小二乘法独用于解地球及太阳系诸天体之题,成效斐然。实则最小二乘法之用与理,重若斯甚,故常被误为全误差之论,有时更谓其具概率论之大宗。——伍德沃德,R. S.

《概率论与误差理论》(纽约,1906年),页九至十。

方浪书院推荐阅读:快穿渣女万人迷结婚生娃帝女临安策秋凉了,婆家该灭门了!全员团宠郡主别太坏快穿:绑定大佬后不辜道者从诡异大陆开始军爷以身许国,军嫂许他也许家[射雕同人]妖女摄政王带娃娇宠野玫瑰穿书后,恶毒女配携带空间发大财寻龙藏珠重生婚宠:总裁撩上瘾我家有直男被弃鬼宅?玄学大佬的直播间火了引她深爱弑天刃面甜心黑小白菜,重生八零撩了狼小姑娘腰细身软,三爷诱吻成瘾毕业后,我回村种地直播四合院:随身一个成长空间逃婚后,她在古代养殖创业暴富了滨城霸主:虐妻悔途剑修小师妹,她六艺全通摆烂吃瓜:满朝文武嘻嘻?不嘻嘻直播算命:遇到亲生父母人偶们的舞台剧这个法师怎么比战士还能打冷面大理寺少卿,天天热脸把我宠扮演舔狗后,深陷修罗场超兽武装:轮回者的系统八零娇妻妩媚,高冷学神食髓知味堂堂女大学生,你说我是阴间使者不灭钢之魂林有德摄政王的王妃狂炸天命格被夺后,她被五个哥哥争着宠重活一世避祸为上清穿:病弱贵妃的荣宠路终极一班:抓住这只丁小雨给残疾老公生三个崽,他乐傻了水仙:悲惨女配跳崖后回到了过去算命直播抓鬼魔圣传缝进灵魂的回忆这么玩居然也可以龙游天下:天地秘闻奇案录逃婚当天,我傍上了大佬老婆,么么哒神秘老公难伺候
方浪书院搜藏榜:我在末世拥有了躺平生活末世女王重归70搞钱虐渣第五人格:笔尖上的矢车菊恭送道友飞升偷偷招惹重生七零美女画家拿捏工程师我在猛鬼宿舍开魔盒神算疯玫瑰,撩得恶犬贺爷心尖宠穿越兽世全是毛茸茸求我摸LOL:快苟到世一上,你玩实名制?综影之我在清剧里想摆烂美漫:什么年代了还当传统蝙蝠侠葱茏如叶八零换亲女配?我靠签到系统杀疯青鲤修仙记摆烂后我重生了福天记等穗抽芽等爱开花茵绝遥全家重生,五岁萌宝被全京城团宠我爹是皇上鬼帝狂妃倾天下在朝堂被偷听心声后,他们都颠了梦回花国娘子别走,为夫一定认真背夫纲现实世界里的爱丽丝我用重生埋葬他勾魂的眼神末世重生,只想囤粮摆烂度日非人世界的人类生活普通人快穿指南八零年代探案日常情逢对手就是爱你,小糯米梦初迷离总有叹惋穿成末世文漂亮女配,男主宠上瘾全民武道:我以诡魂凶兽为食逃荒海岛,奶包福运绵绵赶海发家小马宝莉:马格分裂的公主炮灰好像变了你好呀,作文民国聊斋杀穿诡片世界前任求着我回去先离后爱,前妻在恋综市场杀疯了云阁飞梦穿成修仙界的凡人公主后我登基了高门军官灭妻:要她改嫁送她进监人在武动,开局签到药老戒指我看上了哥哥的战友尘世长生仙
方浪书院最新小说:平凡苟活星尘里的糖薛定谔的开挂数码宝贝:数码反派二战,跟着科涅夫混成了将军他从灰烬中归来原神:当战损帝君穿越请仙典仪女尊:裴公子的演技太过精湛穿来就撩佛子:破戒从吻开始九幽宅邸录崩铁:从翁法罗斯开始成为星神少将军,今日份暗杀请查收顶流穿成炮灰,狂撩残疾反派老公穿成狐妖后,我缠上了赶考书生他的世界有光了霍格沃兹魔法使奥特:诡异入侵?我反手光暗同源星际种田:战神今天又来蹭饭了我的契约蛇君是傲娇龙恶毒男配竟是病娇男主的顶A老婆万人嫌男配只是在假装深情逆流寻她为师尊解毒后,我的修为开始暴涨商先生,新婚请节制!六零娇宠:科研大佬与她的冷面兵宝可梦:我真的有钞能力捡来的妖君天下绝顶石壁庄的郑家大妹子重生后我不嫁了,殿下你哭什么?让你去混编制,你把警花拐跑了?这世界好像不一样?布缝影债:三线锁织机合欢宗:我的鼎炉是女帝!天工医妃:宸王的掌中国师盗墓:我成了不化骨绝区零:都穿越了谁还网贷啊!请回答,苏倩元不负卿不负相思一藏雾一综影视之李奉笑四合院:我晋升后,秦淮茹后悔了七零娇宠:糙汉的天降娇妻女装王爷,迷上男装的我北马传奇之遇见风水妻重生七零我有特殊感知力雪中:从三妻四妾开始少年修仙志暗潮档案疯批医圣升职记